

Noise exposure forecast at workplaces

BUY QUIET 2016

Wolfgang Probst

DataKustik GmbH · Dornierstr. 4 · 82205 Gilching · Germany Tel: +49 8105 77467 – 111 wolfgang.probst@datakustik.com www.datakustik.com

SERT (Sound Energy Ray Tracing)

German guideline to calculate sound propagation:

	VDI-RICHTLINIEN	Februar 1996
VEREIN DEUTSCHER INGENIEURE	Berechnung und Messung der Schallausbreitung in Arbeitsräumen	VDI 3760

Measurements in 122 industrial halls have been performed during development of guideline VDI 3760 with financial support of BAuA

Measurements along straight paths with dodecahedron as calibrated source

1	1 3			Objektnr., Zustandsnr.		
Industriebetrieb XYZ			Name			
mit RA-Massnahmen / mit Maschinen				Zustand		
30	20	4.5	4.5		Länge / Breite / Höhe	
0.045		Streukörperdichte		······		Streukörperdichte
0.034	0.042	0.043	0.045	0.05	0.06	Streukörperabsorption
0.06	0.073	0.075	0.078	0.085	0.105	Absorptionsgrad Wand 1
0.06	0.073	0.075	0.078	0.085	0.105	Absorptionsgrad Wand 2
0.06	0.073	0.075	0.078	0.085	0.105	Absorptionsgrad Wand 3
0.06	0.073	0.075	0.078	0.085	0.105	Absorptionsgrad Wand 4
0.3	0.55	0.69	0.83	0.87	0.88	Absorptionsgrad Decke
0.06	0.073	0.075	0.078	0.085	0.105	Absorptionsgrad Boden
1.05	0.88	0.72	0.65	0.64	0.58	Nachhallzeiten
107.9	112.8	108.6	104.4	104.6	97.7	Schalleistungspegel Quelle
1.5	9	1.5	30	9	1.5	Pfadanfang und -ende X/Y/Z
1/2/3/4/5/6/7/8/9/10/12/14/16/18/20/22 Abstände Quelle-IP					Abstände Quelle-IP	
100	101.7	97.9	95.5	94.8	89.7	IP 1
94.1	98.9	94.5	91.5	92.3	85	IP 2
92.3	94.3	89.9	87.2	86.7	80.8	IP 3
91.3	92.1	88.9	87.4	85.5	78.9	IP 4
:	:	:	:	:	:	:
:	:	:	:	:	:	:
84.6	85.2	76.5	73.8	76.2	68.9	IP 16

Data to describe room, source, path and measured sound pressure levels

 \implies Model of the room with machinery and path

Comparison of measured levels with those calculated with SERT-method : Room AF00116 empty

Comparison of measured levels with those calculated with SERT-method : Room AF00116 with absorbing ceiling

Comparison of measured levels with those calculated with SERT-method : Room AF00116 with absorbing ceiling and machinery installed

Statistical analysis of the deviations for 122 halls: mean value $< \pm 1$ dB, 50% $< \pm 2$ dB

Noise prediction with software techniques links the requirements of Noise directive with declared emission values

Speaking person \rightarrow Simulation as point source

Time

Detailed modeling of a washing machine

Washing machine in a room

Free field calculated noise map (only ground reflection included)

Noise map with all relevant reflections

Modeling of a complex machine as a box (equal to reference surface acc. to ISO 3744)

Gravure printing machine

Simulation with 4 radiating stations

Emission values $L_{\scriptscriptstyle WA}$ and $L_{\scriptscriptstyle pA}$ \rightarrow Declaration according to machine directive

Radiating areas and source distribution \rightarrow Inspection

Determination of effectiv radiated sound power level by simulating the enveloping surface method with receivers on half sphere surface

SERT-calculation of the level with semi-free-field conditions at the operators position $\rightarrow L_{pA,sim}$ Emission sound pressure level known (e.g. declared by manufacturer) $\rightarrow L_{pA}$

Data-organisation in object-tree

Calculation $L_{pA,sim}$ for M1

Calculation $L_{\text{pA},\text{sim}}$ for M2

Calculation L_{Ap,sim} for M1 and M2 (reflections at room surfaces neglected to keep presentation simple)

For each receiver at a workplace with declared L_{pA} :

$$L_{AP} = 10 \cdot \log(10^{0,1 \cdot L_{AP,sim}} - 10^{0,1 \cdot L_{pA,sim}} + 10^{0,1 \cdot L_{pA}}) dB$$

VEREIN DEUTSCHER INGENIEURE	Emissionskennwerte technischer Schallquellen Maschinen in Flaschen-Abfüllanlagen		VDI 3741		
Characteristic noise emission values		Diese Richtlinie wurde mit Ankür	Diese Richtlinie wurde mit Ankündigung im Bundes-		
of technical sound sources		anzeiger 31 (1979) Nr. 119 vom 3	anzeiger 31 (1979) Nr. 119 vom 30.6.1979, S. 5,		
Bottle filling plants		einem öffentlichen Einspruchsver	einem öffentlichen Einspruchsverfahren unterworfen.		

Sound power level L_{WA}

Emission sound pressure level L_{pA}

Emission values of Palletizer and Depalletizer - 1981

Proposal for a revision of VDI 4741 - 2016

Advices for modelling and source distribution (default)

Close! Representation Camera Video Help!

X

Acoustic model of the palletizer machine

E CadnaR 3D-View (F12 for help) (99997 particles, t = 0.0278 s [~ 9.53 m], order 0 - 359, speed factor = 0.0000, Mem = 76 MB) (30.3 fps) Closel Representation Camera Video Help!

Visualization of sound particles radiated by the palletizer (L $_{\rm WA}$ 104 dB, L $_{\rm pA}$ 82 dB)

CadnaR 3D-View (F12 for help) (99997 particles, t = 0.0432 s [~ 14.85 m], order 0 - 1442, speed factor = -0.0001, Mem = 76 MB) (10.4 fps)

Close! Representation Camera Video Help!

Result from SERT-calculation in room with 6 m height \rightarrow Level at operators position is 87.3 dB(A)

- 🗆 X

Simulation of a complete plant with machinery and transport-systems

Absorbing baffle system at the ceiling

Absorbing baffle system at the ceiling integrated in the model

What is needed:

Production-line X13				
Machine	L _{WA}	L _{pA}		
Cooler CX14	96	-		
Cleaning O+H	104	86		
Inspection KR10C	101	84		
Filler HuK236	104	83		
Labeller KS 45C	99	82		
Conveyor 128	108	-		
Conveyor 129	101	-		
:	:	:		
:	:	:		

Emission values guaranteed by the manufacturer

The result determined by SERT - simulation:

Production-line X13					
Machine	L _{Ap}	+MPack1	+MPack2		
Cleaning O+H	89	87	84		
Inspection KR10C	88	86	85		
Filler HuK236	86	85	84		
Labeller KS 45C	86	85	83		
:	:	:	:		
:	:	:	:		

If the predicted L_{Ap} values are exceeded, measurement of $L_{pA}\,$ in accordance with ISO 11204

Prediction in the planning phase – from declared emission values to the expected levels at the workplaces

Thank you for your attention