

LawnMowers Noise issues: An Overview

From LaMoNoV Project

Xavier Carniel – Cetim – France (xavier.carniel@cetim.fr)

What was the objective of this R&D project ?

- design the product which can comply with the future European requirements on noise emission/radiation
- establish rational links between the physics of sound emission of lawnmower and the psycho-acoustic parameters, find the relevant sound quality metrics for evaluation of noise annoyance for typical use of lawnmowers
- to produce the knowledge and develop design tools in order to achieve low noise lawnmowers
- obtain credibility with the EC regulators
 - industry serious about noise issues
 - seeking scientific evidence on the opportunities of reducing the limits further

Project targets

- Identification of noise sources on existing products
- Psycho acoustic analysis using sound quality parameters
- Setting up a database of the products involved in the R&D project
- Building of virtual prototypes through the use of an appropriate software

Partnership

Research Performer

- Cetim
- Arcus (University of SalfordHead Acoustics GMBH

Industrial Partners

- ALKO, Germany
- Honda, Belgium
- John Deere, Germany
- MTD, Germany
- Viking, Austria
- Toro, Belgium

- **Briggs & Stratton, CH**
- Wiedemann, Germany
- **Gaby Samag, France**
- Honda, France
- **Outils Wolf, France**
- ► Granja, France

Machine types

Main issues before labeling

Main issues before labeling

- Noise generation
 - Understanding Physics
 - Modeling
- Which quantity?
 - dBA versus Sound Quality
- Accuracy
 - Dispersion
 - Guaranteed level

Source ranking

Objective: Sources ranking on 32 types of LM.

Buy Quiet-August 2016

LawnMovers Noise-X. Carniel

Blade noise

- Special blade test-rig designed and used for blade tests.
- A database with the noise of 32 blades created.
- An industrial test procedure defined for blade

Blade-deck interaction

25,08.2016

Example of blade noise source, alone and on a machine. Absorbing ground.

Influence of ring : +4.2 dB(A)
Influence of deck : +4.7 dB(A)

400

Hz

1000 2000

200

100

10

Engine noise

- ▶ 3 forms: air borne (main), structure borne and exhaust.
- A comprehensive characterisation method for air-borne noise developed, based on partial sound powers.
- Simplified methods for structure-borne and exhaust noise characterisation developed as well.

Sources and Transfer Paths (Airborne)

Mid and high frequency => Blade source

1300Hz to 1400Hz =>Blade and grass box sources

"front Structure" source => 700Hz – 800Hz

Sources and Transfer Paths (Structure-borne)

Deck insertion loss, white noise source

Deck Transmission loss for different materials

Deck Radiation for different materials

Deck vibration Smooted quadratic Tranfer Functions

Modeling

Cetim

14

68

61

dB(A) versus Sound Quality

5,08.2016

32 machines were recorded in static and dynamic conditions, from "driver" and "neighbours" point of view

- ► To allow test jury
- ► To find significant criteria

¹⁶ dB(A) versus Loudness

25,08.2016

Loudness is more sensitive to differences among machines
Customers like to have "silent" and "Powerful" machines!

¹⁷ Production Dispersion

	L _w mean	K factor	L _w guaranteed
LM 1	92,8	1,78	95
LM 2	94,0	2,38	96
LM 3	98,3	1,12	99
LM 4	97,0	2,43	99
LM 5	99,7	2,45	102
LM 6	101,4	0,97	102
LM 7	101,0	2,10	103
LM 8	104,4	0,59	105

Cutting width < 50 cm Lw guaranteed limited to 96 dB(A)

Cutting width > 50 cm Lw guaranteed limited to 100 dB(A)

Cutting width > 120 cm Lw guaranteed limited to 105 dB(A)

Long Term Monitoring

,08.2016

cetim

18

5 machines of 2 types and a reference source measured every month during 2 years

Buy Quiet?

- Lawnmowers should cut grass! Decreasing the blade speed decreases the noise, but also the Quality of Cut (evaluated by jury).
- Blade noise is dominant, but interactions beetween components (blades, deck, engine) play a significant rôle
- Accuracy can't be better than 3dB (Lw, K)

Loudness is a better indicator of annoyance (quietness?)

