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n the last years, numerical simulations have been more 
and more intensively used in industrial design processes to 
assess the vibro-acoustic behavior of various components. The 
problem of constructing an appropriate numerical model from 
a real physical confi guration is however complex and directly 
involves several sources of uncertainties. In this context, non-
deterministic methods can be defi ned as any methods aimed 
at qualifying or quantifying the uncertainty on response or 
performance indicators supported by a specifi c problem.

The uncertainty sources can be classifi ed in the three following 
categories [1,2] :

- First, the lack of knowledge in the physical process or the 
complexity of this process forces the designer to defi ne 
a set of modeling assumptions during the construction of 
the mathematical model. Modeling errors result from these 
assumptions. Practice and intuition of the designer as well 
as sophistication of the model generally tend to reduce the 
modeling error.
- The second source of uncertainty is linked to the numerical 
errors involved by the computational implementation of the 
mathematical model. The numerical methods (interpolation, 
integration, equation solving, etc.) are generally selected on 
the base of their convergence properties (which should lead 
to a reduction of the numerical error as soon as the size of 
the numerical model is increased). This refi nement however 
results in higher computational requirements. Depending on 

the numerical method, some procedures are available to 
estimate this numerical error. It can thus be said that, basically, 
this second source of uncertainty is linked to the effi ciency of 
the available computing tools.
- The third source that involves uncertainty is related to 
the totally unknown or intrinsically variable parameters of 
the mathematical model as well as to their experimental 
identification. The resort to laboratory or experimental 
procedures suggests that the exact knowledge of the 
parameters is not possible. In fact, these procedures always 
need an answer to representativeness issues, reproducibility 
features and measurement errors. In some circumstances 
(especially in the early design phase), only rough descriptions 
(in terms of intervals or linguistic values (‘low’, ‘high’)) of 
material and/or geometrical parameters are available. A 
fi ner classifi cation of model parameter uncertainties is often 
made: uncertainty on loads or excitations, uncertainties on 
strength properties and uncertainties on material, mechanical 
and geometrical properties of the model.

This convenient description should not be taken as suffi cient 
as these three uncertainty sources are not independent. It is, 
for instance, diffi cult to reduce the fi rst uncertainty source 
without increasing the last one, as a complex model very 
often relies on an important number of parameters. A good 
example is provided by porous materials [3] : the most simple 
model relies on a concept of equivalent fl uid (assuming a 
rigid skeleton) while more sophisticated models are relying 
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uncertainties for numerical methods (FEM, SEA) traditionally used for vibro-acoustic simulations. 
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I



“U
n
ce

rt
ai

n
ty

-n
o

is
e”

 L
e 

M
an

s

27

A
co

u
st

iq
u
e 

&
 T

ec
h
n
iq

u
es

 n
° 

4
0

on a two-phase model (Biot model for instance) involving a 
substantial number of parameters not easy to measure and 
quite frequency dependent …

In this context, the steady development of computational 
mechanics over the past five decades, supported by 
continuously more efficient computing tools, gives the 
opportunity to defi ne structural models reaching a relatively 
high level of refinement. These models however require 
the definition of many material properties, geometrical 
parameters, load conditions, ..., the exact knowledge of which 
could not be possible. Some compromise has therefore to 
be found.

In a vibro-acoustic context, the general modeling strategy 
should take into account the fact that  uncertainties are usually 
higher for the (structural) dynamic component than for the 
acoustic component. This is due to the relative simplicity 
of the acoustic propagation operator with respect to the 
elastodynamic operator. In most of the cases, the quality 
of acoustic predictions strongly depends on appropriate 
boundary conditions (especially velocity or acceleration 
constraints).

An important source of uncertainty is attached to boundary 
conditions (in general) and, particularly, to loading or 
kinematic excitations of the model. Here, uncertainties occur 
simultaneously on the mathematical model stage (nature of 
the excitation, spatial distribution, spectral content or time 
histories, …), on the numerical model stage (discretization of 
the selected excitations, sampling procedures, …) and on the 
parameter defi nition stage (intensities, probability distributions 
of the loads, stationarity or unstationarity of the random 
processes…). Methods for handling uncertainties in the load 
conditions of dynamic models are now well established. 

The related semi-empirical spectral models for usual random 
distributed loading (diffuse fi eld, turbulent boundary layer) are 
important components of vibro-acoustic simulations. This is, at 
least partially, due to the diffi culty to simulate highly turbulent 
unstationary fl ows with traditional CFD tools at high Reynolds 
number.

The uncertainty sources described above are also hard 
to quantify independently. More precisely, it is diffi cult to 
determine the uncertainty level implied in the modeling 
stage, that is involved during the mathematical modeling 
process and its numerical implementation. Practically, there 
are no other means than to consider that these uncertainty 
sources are negligible or are covered by the variability of 
the model parameters. This last assumption, although it has 
no physical foundation, seems to be generally accepted in 
the literature. Recently Soize [4] developed non-parametric 
approaches in order to handle these uncertainties in a more 
rational way. This model has been extended recently to vibro-
acoustic studies [5].

Based on the above observations, one is forced to admit 
that a given amount of uncertainty or irreducible variability is 
present in each vibro-acoustic model, and that simply carrying 
out a deterministic analysis leads to an error, which should 
be at least estimated. Non-deterministic approaches are 
thus a natural and necessary extension of present analysis 
techniques.

Mechanical and geometric uncertainties

Stochastic Finite Elements

Amongst all numerical procedures in non-deterministic 
computational mechanics, the stochastic finite element 
method (SFEM) [6,7] has been developed and applied to 
the reliability and response variability assessment of static 
and dynamic, linear and non-linear problems. In the context 
of second moment approaches for the response variability 
assessment, the perturbation SFEM [8], the spectral SFEM [9] 
and the Monte-Carlo simulation method are available.

The selection of a particular method often relies on 
considerations about computational requirements with 
regard to the dimension of the problem (number of degrees 
of freedom (dofs) and number of uncertain parameters) and 
to the considered variability level. The Monte-Carlo simulation, 
from its general formulation, is able to cope with high variability 
levels but suffers from prohibitive computational costs. 
Recent developments have thus been aimed at optimizing 
its application by using variance reduction techniques or by 
resorting to parallel computing [10]. In the spectral SFEM, the 
number of involved random variables is very critical so that 
appropriate algebraic solvers, based on the particular structure 
of the problem, have been developed [11]. The perturbation 
method has been widely applied to stochastic problems since 
it usually requires low computational resources. It however 
suffers from the fact that it relies on a low-degree polynomial 
approximation of the structural response and is thus aimed 
at solving models involving a low variability level of the design 
parameters [2,12].

Considering a linear vibro-acoustic problem stated in the 
frequency domain, the discretization using conventional fi nite 
elements leads to the following complex-valued algebraic 
system:

 (1)

where ω is the circular frequency; US is the vector of nodal 
displacements of the structure; Ψ is the vector of nodal 
potentials of the fl uid; FI is the excitation vector, MI, CI and 
KI are the mass, damping and stiffness matrices for the 
fl uid (I=F) or the structure (I=S) and CFS is the fl uid-structure 
coupling matrix. Defi ning a set of random variables (either 
of material or geometrical nature) bi(θ) (i=1, …, q), each of 
the above vectors and matrices is a random quantity and 
implicitly exhibits a θ-dependence. Note that this system may 
be rewritten in a canonic form for dynamical systems:

 (2)

where U(θ) is the vector of both potentials or displacements, 
F(θ) is the excitation vector, M(θ) is the system mass matrix, 
C(θ) is the system damping matrix and K(θ) is the system 
stiffness matrix. 
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Monte-Carlo simulation 

Solving this system of equations for a relatively high number 
of realizations of the random design variables leads to a 
sampling of the nodal values of the unknown potentials and 
displacements. Post-processing operations can then be 
applied to these basic values in order to get samples of local 
response indicators (such as the  pressure fi eld) or of global 
indicators (such as the mean quadratic pressure over the 
domain). Statistical convergence properties guarantee that 
applying statistical operators to the produced samples gives 
estimates of the parameters of the response distribution 
laws. It is however diffi cult, for industrial problems, to obtain 
(even low order) converged statistics due to the high number 
of repeated simulations. In addition to poor convergence 
properties, Monte-Carlo simulation suffers from the following 
drawbacks:

- in the context of high variability level (where alternative 
non-deterministic methods are not effi cient), a signifi cant 
dependence of the response distribution law on the parameter 
distribution law is possible;
- no error estimates are available to investigate the accuracy 
of the computed response statistics.

Sensitivity analysis and perturbation approach
in physical coordinates

The perturbation SFEM basically assumes that the random 
vibro-acoustic response can be represented by a fi rst-order 
Taylor development in the neighbourhood of the mean 
confi guration:

 (3)

By fi rst-order differentiating Eq. (2) with respect to a given 
parameter b, the following relation is obtained:

 (4)

with the quantities K, C, M, U and F being evaluated at the 
nominal value of b. This relation shows that the fi rst-order 
sensitivity of the unknown potentials and displacements can 
also be evaluated by solving a complex-valued algebraic 
system. It is noticeable that this system has the same operator 
as the zeroth-order system, which drastically reduces the 
computational effort required for the solution (as the system 
already exists in factorised form). The right-hand side of the 
fi rst-order algebraic system involves the sensitivities of the 
K, C, M matrices and of the excitation F with respect to the 
design parameter b.

Applying fi rst-order and second-order statistical operators to 
the approached response surface directly leads the mean 
and variance of the response indicators. Statistics of post-
processing fi elds can be obtained similarly. It is clear that 
the global accuracy achieved by the perturbation SFEM 
depends on 1) the variability level of the design variables and 
2) the nonlinearity degree of the implicit relation between the 
response indicator and the design variables [2].

Sensitivity analysis and perturbation approach in 
modal coordinates

The solution strategy in physical coordinates (direct approach) 
described above should be distinguished from a modal 
approach in which the eigenmodes of the system (and their 
associated sensitivities) are fi rst identifi ed and used as a base 
for developing the unknown response (and its associated 
sensitivities). Referring to the previously-stated linear vibro-
acoustic problem in the frequency domain, the structural and 
acoustic eigenmodes, (ωSi,ΦSi) (i=1,…,nS) and (ωFj,ΦFj) (j=1,…
,nF) resp., are extracted prior to the frequency analysis. The 
unknown potentials and displacements can then be projected 
on their respective modal bases:

 (5)

and the modal coordinates are obtained at each discrete 
frequency by solving the following system of equations of 
order nS+nF:

 (6)

Observe that, due to the convergence properties of the modal 
superposition, the low-frequency range analysis does not 
require a full extraction of the eigenmodes of the structure 
and the fl uid domain. A reduction of the problem dimension is 
consequently achieved in this way. 
For fi rst-order sensitivity analysis,  the modal superposition 
is first-order differentiated, which leads to the following 
relations:

 (7)



“U
n
ce

rt
ai

n
ty

-n
o

is
e”

 L
e 

M
an

s

29

A
co

u
st

iq
u
e 

&
 T

ec
h
n
iq

u
es

 n
° 

4
0

The sensitivities of the modal coordinates are obtained by 
solving the complex-valued system of equations:

Note the close similarity between these relations and the 
sensitivity analysis in physical coordinates. Once the system 
is projected in the modal basis, the sensitivity analysis can be 
performed using similar solution sequences, which can lead to 
a substantial profi t in an algorithmic implementation.

An alternative to solving the above equation for the sensitivities 
of the modal coordinates is to perform Monte-Carlo simulation 
on the equation giving the modal coordinates [12]. In fact, this 
discrete system is of reduced size due to the modal formulation 
and repeated solutions are not anymore computationally-
intensive with regard to the initial eigenproblem solution. 
Moreover, using Monte-Carlo simulation enables to handle the 
nonlinearity between the modal coordinates and the random 
design parameters without any restriction on the variability 
level (which is especially useful at resonances).

Random fi eld modeling

The concept of random fi eld [13] is often resorted to as a 
mean to model the spatial variability of the material parameters 
(sometimes improperly considering the lack of experimental 
knowledge in the uncertain spatial behaviour of material 
properties). As a consequence of its continuous character, 
the random fi eld requires an appropriate discretisation, leading 
to the identifi cation of a fi nite set of random variables. This 
set has to satisfy two opposite requirements: on the one 
hand, it should represent accurately the original continuous 
random fi eld and, on the other hand, it should involve the 
smallest number of random variables since the computational 
cost of response variability analysis grows signifi cantly with 
this number. For instance, the spectral SFEM, based on 
the Karhunen-Loeve expansion of the random fi eld, uses 
polynomial chaoses on which the stochastic response is 
projected [9,11]. 

The identifi cation of this projection requires the solution of an 
algebraic system of order P x N, where N is the size of the 
deterministic problem and P is the number of terms (basic 
random polynomials) involved in the projection. This number 
P grows prohibitively as soon as the global order of the 
method and/or the number of discrete random variables are 
increased. The Monte-Carlo simulation method is known to 
provide the best variability estimations as soon as the number 
of samples involved in the analysis is suffi cient. Whereas it 
is diffi cult to estimate this number, it should be increased 
with the number of random variables involved in the model, 
which results in a substantial increase of the computational 

time. Finally, the perturbation method, based on a low-order 
response representation, estimates the response variability at 
a relatively low additional cost with respect to the deterministic 
analysis, which is however proportional to the number of 
random variables in the stochastic analysis.

Reduction techniques of the fi nite set of random variables are 
however available [2]. The fi rst well-known reduction technique 
relies on the fi nite element mesh to perform the discretization 
of the random field. A midpoint technique enables the 
identifi cation of a set of correlated random variables from the 
covariance function of the random fi eld, each variable being 
related to a particular element. A decorrelation procedure 
based on the spectral analysis of the discrete covariance 
matrix is performed in order to identify a reduced number of 
stochastic basic components. As an alternative to the midpoint 
discretization, a (numerical) Karhunen-Loeve decomposition 
is possible, the truncation of which allows to extract the 
stochastic components that introduce the major variability 
in the model.

The criteria leading to the definition of the random field 
discretization and analysis meshes are different, the fi rst being 
related to the correlation length of the random fi eld, the second 
being related to the stress gradients or the wave speeds in 
the model. Generally, the second criteria is more demanding 
than the fi rst one. It results from this observation that using 
the fi nite element mesh for the random fi eld discretization can 
lead to increase computational costs and even to numerical 
inaccuracies. A second reduction technique is thus possible 
in which a different discretization mesh is used.

In contrast with random variable models, the random fi eld 
model enables the development of a compensation effect, i.e. 
a reduction of the response variability due to the correlation 
structure of the random fi eld. Fig. 1 illustrates, for the simple 
confi guration of a clamped-free beam with random fl exibility F 
(analytical solution is available [2]), the close relation between 
the compensation effect and the fi ltering of the stochastic 
components of the random fi eld by the dynamic system. 
First, the intensity of the compensation effect is related 
to the correlation structure of the random field. A more 
important compensation effect is observed in the case of a 
low correlation length. 

The error that would be obtained if the correlation properties 
of the fi eld was wrongly taken into account would thus be 
notable. Second, the compensation effect strongly depends 

(8)
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on the localization of the response observation point (the larger 
the development area of the compensation, the larger the 
compensation effect). For global response indicators, the 
compensation intensity is thus important. 

Practically, the selection of the random fi eld discretization 
mesh and the truncation ratio should be based on the 
following considerations.
First, depending on the random fi eld type and correlation 
structure, it is possible to evaluate the theoretical number of 

Fig. 1: Compensation effect on the displacement fi eld u of a
  clamped-free beam with random fl exibility fi eld F

Fig. 2 : Dispersion of the vertical displacement FRF 
for a  plate with random fl atness default
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random variables NKV giving a good variance representation 
of the fi eld. 
Secondly, considering the possibility of the development of a 
compensation effect (depending on response characteristics 
and random fi eld parameters), this theoretical number can 
be reduced. 
Thirdly, the discretisation mesh is selected in such a way 
that it is compatible with the discretisation technique (a fi ner 
mesh should be selected for the midpoint discretisation than 
for the Karhunen-Loeve expansion technique). This mesh 
should allow for a good representation of the random fi eld 
(suffi cient number of subdivisions per correlation length and 
per eigenfunction wavelength). If we note by NEL or NND the 
number of elements and nodes of this mesh, the truncation 
ratio r is fi nally selected in such a way that r x NND=NKV or 
r x NEL=NKV for the Karhunen-Loeve expansion or midpoint 
discretisation, respectively.

Shape uncertainty

Most SFEM applications in the literature involve uncertain 
parameters of material or mechanical nature and rarely of 
geometrical nature. Random shape variables result in uncertain 
domains and boundaries, which complicate the stochastic 
analysis. Generally, applications aimed at characterizing the 
response variability resulting from a geometric uncertainty 
source are based on models allowing particular kinematic 
assumptions. In such cases, the treatment of the geometric 
variables by the same means as the material parameters (for 
instance the cross-section of a beam element or the thickness 
of a plane stress model) is possible. Only a few applications 
really handle the shape randomness. However, geometric 
uncertainties can be found in a wide range of mechanical 
applications and should consequently be addressed in a 
general framework.

The perturbation SFEM, used in conjunction with the shape 
design sensitivity theory, offers a possibility to develop an 
effi cient technique for handling geometric uncertainties [12]. 

As an example, Fig. 2 shows the variability of the vertical 
displacement fi eld for a plate having a random fl atness default. 
Due to the apparition of stiffening membrane effects, the 
displacement fi eld exhibits an hypersensitive behavior w.r.t. 
the low non-planearities [14]. 
This effect should be accounted for in explaining the scatter in 
the vibro-acoustic behavior of industrially identical structures 
(see Fig. 2).

Fuzzy Finite Elements

Fuzzy logic and fuzzy arithmetics have also been applied to the 
fi eld of fi nite element analysis. In fact, not all uncertainties are 
objectively quantifi able, especially those based on incomplete 
information, and can therefore not be handled satisfactorily 
in the probability theory. In fuzzy FE analysis, each uncertain 
property and each response value is represented by a fuzzy 
number, defi ned by its membership function. Fuzzy numbers 
are then discretized by performing cuts at given degrees of 
membership, which reduces the analysis to the solution of 
interval arithmetic problems.

The use of interval arithmetics however restricts the tractability 
of the method to small systems (the problem inversion being 
computationally tedious) and, if not carefully controlled, leads 
to an artifi cial augmentation of the interval sizes. Circumventing 
this spurious behavior, the combinatorial approach (vertex 
method), consists in considering all possible combinations for 
the upper and lower bounds of the design parameter intervals. 
Specifi c modal-based methods for the structural dynamics 
in the frequency domain have been proposed by Moens and 
Vandepitte [15]. 

Recent results [16] tend to show that adding sensitivity-based 
information in the construction of the fuzzy response enables 
to achieve better effi ciency in the numerical procedure. As an 
example, Fig. 3 shows, for two uncertainty levels, the fuzzy 
frequency response function for a displacement dof in an 
articulated truss structure.

Fig. 3 : Articulated truss structure : fuzzy FRF of the displacement fi eld (all parameters having 3% (left) or 10% (right) of variability)
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Statistical Energy Analysis

FEM (or BEM) techniques are usually effective for ‘low’ 
frequency evaluations. This is mainly due to the need for mesh 
refi nements as frequency increases. The related model size 
(number of displacement and pressure degrees of freedom) 
induced practical limitations that are, more and more, overcome 
by advanced solvers exploiting parallel architectures and 
powerful processors. This recent trends allows for a signifi cant 
extension of frequency ranges where FEM techniques can be 
applied. Such extension calls however for appropriate post-
processing techniques: local indicators are not meaningful 
in such a context since they are strongly spatially variable 
and too sensitive to model parameters. Global indicators 
(spatially and/or frequency averaged) are requested and 
can effectively be produced starting from extended modal 
representations of complex vibro-acoustic systems [17]. 
Such an approach is also the basis for developing automatic 
partitioning techniques [18,19,20] supporting the application 
of SEA techniques. Additionally such advanced FE models can 
support the evaluation of coupling loss factors and a more 
precise evaluation of the injected power related to complex 
random excitations (turbulent boundary layer for instance). 
An example of energetic post-processing on a train structure 
is provided in Fig. 4.

Conclusions

Vibro-acoustic simulations are generally affected by several 
uncertainty sources appearing at different stages of the design 
process. In the early modeling stage, a continuous model is set 
up in simplifi cation of a real physical behavior. The parameters of 
this model are, in most circumstances, not known with certainty. 
In a vibro-acoustic context, the response variability mainly results 
from a signifi cant uncertainty in the structure characterization 

(uncertain geometric confi guration) and in the excitation model 
(diffuse fi eld and TBL). If suffi cient information is available, a 
probabilistic behavior for these unknown parameters can be 
used (random variables or random processes) and appropriate 
solution technique can be used. For low-frequency analysis, 
the stochastic FEM provides effi cient modal strategies that 
enable the computation of the fi rst and second-order response 
statistics. Alternatively, fuzzy techniques can handle design 
variables for which the probabilistic model is not suitable. As the 
modal density increases, the response uncertainty is such that  
the vibro-acoustic response should be investigated in terms of 
spatial and/or frequency-averaged quantities. The resort to SEA 
techniques can be secured by post-processing modal FE-based 
results in order to automatically build an SEA model.
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