

THERMOACOUSTIQUES SOUS DALLE FLOTTANTE

entre locaux chauffés et locaux non chauffés

Gérard SIMIAN

Colloque CIDB du 16 décembre 2009

Contexte et objectif

La réglementation **RT 2005** pour les constructions neuves favorise des solutions de type « chape flottante thermique » entre locaux d'activités ou parking et logements.

Conséquences:

- recours plus fréquent aux isolants « mousses alvéolaires », dont les performances acoustiques sont limitées
- réglementation acoustique renforcée précisément à ces endroits : DnT,A > 55 dB (parking) et 58 dB (activité)

Contexte et objectif

DEMANDE de **QUALITEL** :

Trouver des solutions techniques en phase avec les 2 obligations réglementaires :

- >thermique
- **≻acoustique**
- à partir d'une approche mixte
- >physique (mesures)
- >numérique (prédictions)

Les partenaires

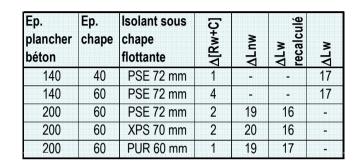
Etude réalisée – à la demande du GEA de Qualitel - en 2006 et 2007 en partenariat avec :

- le **SNPA** représentant les industriels producteurs d'isolants thermiques PSE, XPS et PUR
- l'AFSCAM représentant les industriels des sous-couches acoustiques minces
- le CSTB département Acoustique et Eclairage
- l'ADEME

Les isolations en sousface

Flocage épais

PHASE 1 - Planchers thermiques



Etablissement d'un point de	
référence en testant 3 sous-	
couches thermiques (PSE 72	
mm, XPS 70 mm et PUR 60 mm)	

■ Modélisation des essais avec le logiciel de prédiction CASC (R_w +C et $L_{n,w}$)

 Modélisation des isolements D_{nT,A} avec ACOUBAT

Doublage ESA5 + 8dB (sup.)				
plancher	isolant	DnT,A		
200-230	PSE72	53-54		
200-230	XPS70	52-54		
200-230	PU60	53-54		

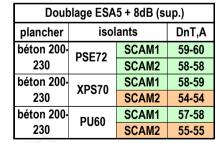
Doublage ESA5 + 8dB (inf. / sup.)					
plancher	isolant	DnT,A			
200-230	PSE72	53-55			
200-230	XPS70	53-54			
200-230	PU60	53-55			

La réglementation acoustique n'est pas respectée avec ce type de solution

PHASE 2 - Planchers thermiques et coustiques

■ Calculs avec CASC pour mettre en évidence que l'ajout d'une souscouche acoustique mince permet de répondre en partie à la réglementation

 Mesures en laboratoire sur planchers de 200 mm combinant une sous-couche thermique et une sous couche acoustique


Ep. plancher béton	Ep. chape	Isolant(s) sous chape flottante		Δ[Rw+C]	ΔLnw	ΔLw recalculé	ΔLw
200	60		SCAM 1	5	-	23	
200	00	-	SCAM 2	2	-	18	-
200	60	DCE 72	SCAM 1	8	22	20	-
200	60	PSE 72	SCAM 2	8	24	21	-
200	60	XPS 70	SCAM 1	8	23	22	-
200	00	XPS 70	SCAM 2	2	18	17	-
200	60	PUR 60	SCAM 1	7	22	22	-
200 00	SCAN	SCAM 2	4	21	19	-	

SCAM 1 : sous-couche acoustique mince certifiée CSTBât composée de fibres de verre + bitume

SCAM 2 : sous-couche acoustique mince certifiée CSTBât composée de fibres polyester +

Modélisation
 des isolements
 D_{nT,A} avec
 ACOUBAT

acoustique

Doublage ESA5 + 8dB (inf. / sup.)			
plancher	isol	DnT,A	
béton 200-	PSE72	SCAM1	59-60
230	PSEIZ	SCAM2	58-58
béton 200-	XPS70	SCAM1	59-60
230	APSIU	SCAM2	54-54
béton 200-	PU60	SCAM1	58-60
230	F000	SCAM2	55-55

La réglementation acoustique est alors respectée

Solutions validées par QUALITEL

Pour un $D_{nT,A}$ vertical = 58 dB (logement / activité) :

- Plancher béton 200 mm sans isolant thermique en sous-face (ou flocage 30 mm maxi)
- + SCAM 1 certifiée CSTBât + isolant thermique compatible (PSE 72, XPS 70 ou PUR 60)
- + chape mortier flottante 60 mm + revêtement de sol collé.
- Façade PPC 20 cm ou béton 15 cm + ITI par complexe de doublage thermo-acoustique (PSE Ultra ThA 13+80 ou LM 10+80.
- Cloisons de distribution de type alvéolaire ou plaques de plâtre sur ossature métallique.

<u>Pour un D_{nT,A} vertical = 55 dB</u> (logement / parking):

- ⇒ Solution identique, excepté pour :
- L'isolant acoustique sous chape qui peut être une **SCAM 1 ou 2** superposée à un isolant thermique compatible (PSE 72, XPS 70 ou PUR 60).
- L'ITI qui peut être réalisée avec un complexe de doublage PSE Th38 10+80.

<u>Dans tous les cas</u>: Les isolants thermiques et acoustiques superposés sous la chape flottante doivent respecter les dispositions de la norme NF P 61-203 (notamment Σ indices i des $a_i \le 4$).

Suites possibles à cette étude ?

- Influence des revêtements flottants (carrelage ou parquets sur sous couche), des flocages épais en sous face, des dalles alvéolées, des chapes fluides,..
- Solutions pour la RT 2012
- Influence de l'ITE
- Solutions en rénovation