

Recherche-Ingénierie sur les interactions Performances acoustiques/Performances thermiques dans le bâtiment

CSTB Direction Santé Confort

Impact de la règlementation thermique sur les performances acoustiques

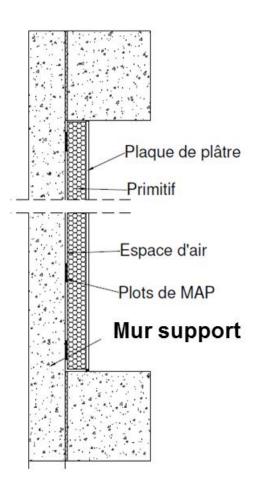
Quelques exemples

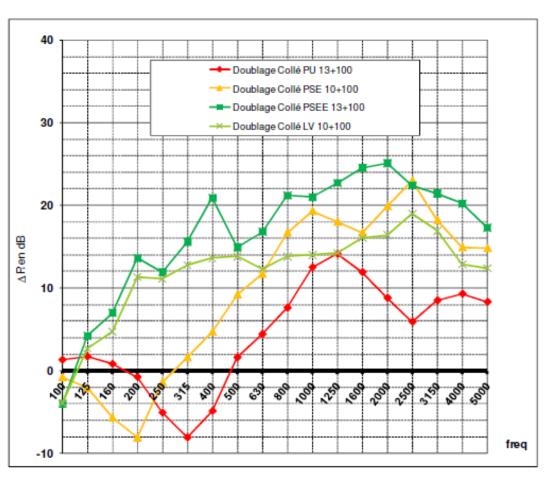
Introduction

Règlementation thermique : diminution des dépenses énergétiques,

Mais avec comme finalité le confort et l'acceptation de l'habitant, usager

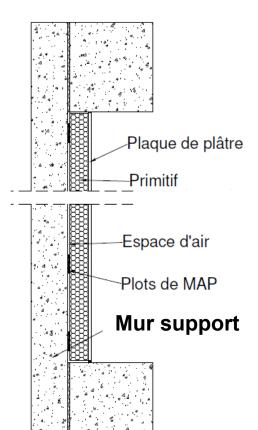
Quelques exemples de systèmes acoustiques et thermiques


Doublage collé par plots


Rupteur de pont thermique

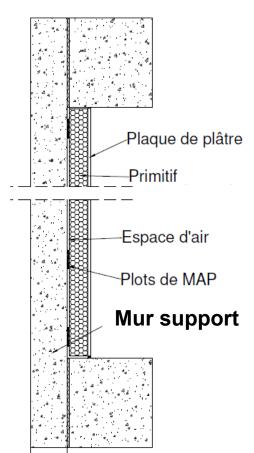
Double fenêtre

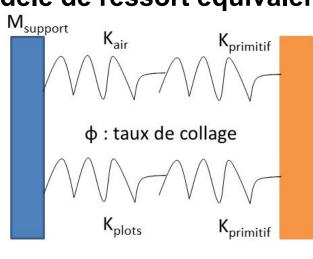
Paroi avec ossature métallique thermique

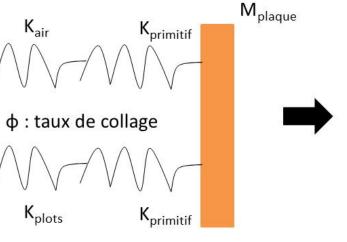


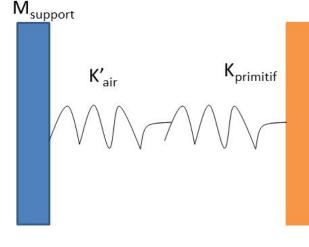
$$\Delta(R_w+C)_{mur\ lourd}$$

 $\Delta(R_w+C_{tr})_{mur\ lourd}$

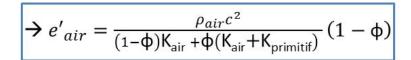

 Système multicouche → approche TMM (Acousys)

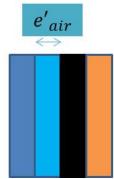

- Quelle approche pour la simulation de l'amélioration ∆R = R_{système}-R_{support}
- · Influence des plots de colles en fonction
 - > du primitif?
 - → de la lame d'air ?
- Raideur dynamique pour caractériser le primitif



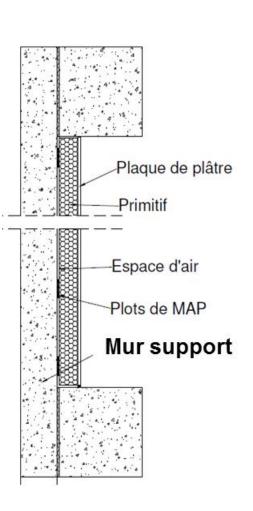

Modèle de ressort équivalent

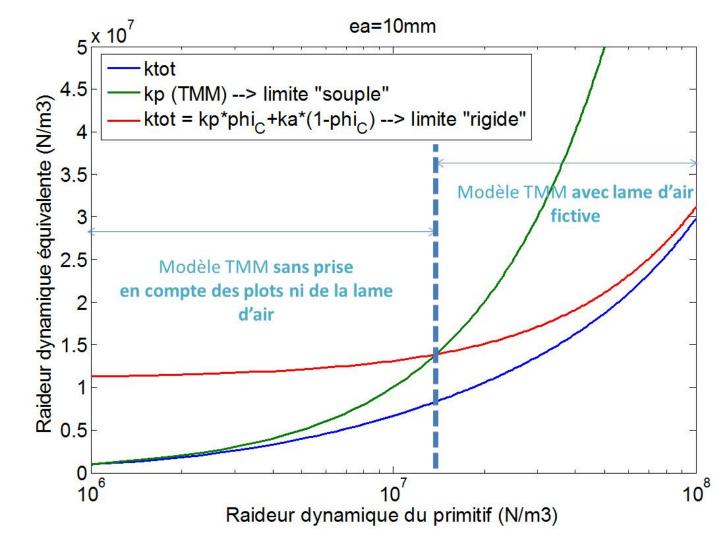
Lame d'air fictive

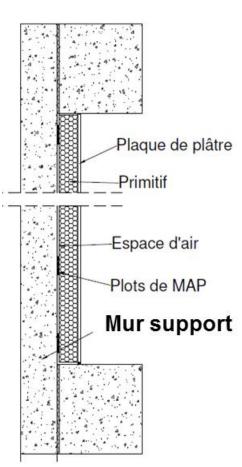


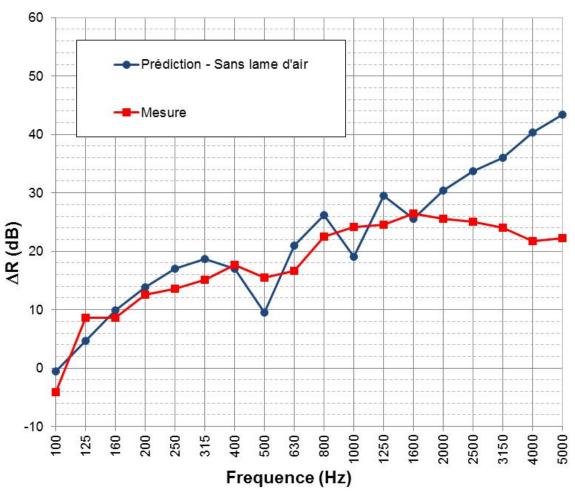


$$K_{eq} = K_{\text{primitif}} \phi + \frac{K_{\text{air}} K_{\text{primitif}}}{K_{\text{air}} + K_{\text{primitif}}} (1 - \phi)$$

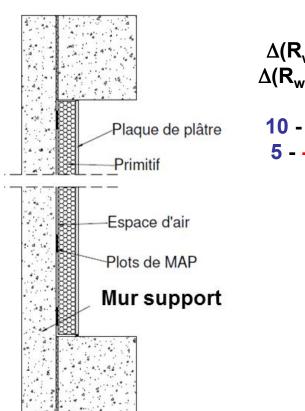



$$K_{eq} = \frac{\mathsf{K'}_{\mathsf{air}} \mathsf{K}_{\mathsf{primitif}}}{\mathsf{K'}_{\mathsf{air}} + \mathsf{K}_{\mathsf{primitif}}}$$

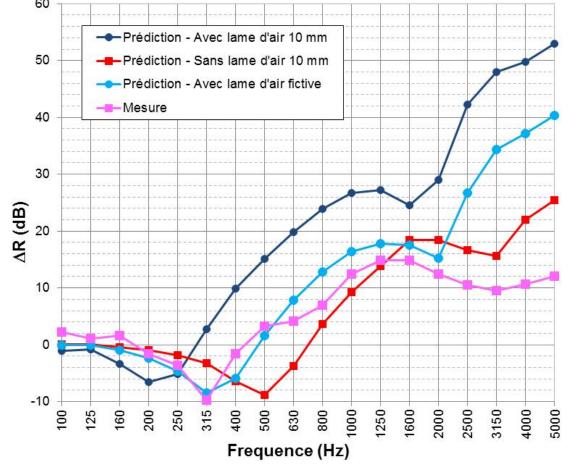



Doublage PU 13+100 : K_{primitif} = 1.8MN/m³ (mesuré) → TMM simple

 $\Delta(R_w+C)_{mur\ lourd}$ $\Delta(R_w+C_{tr})_{mur\ lourd}$


8 - 7 dB

5 - 4 dB


Doublage PU 13+80 : $K_{primitif} = 100 MN/m^3$ (mesuré), $\phi = 30\% \rightarrow e' \downarrow air$

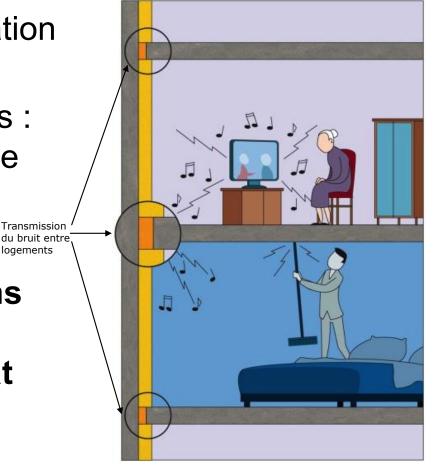
 $\Delta(R_w+C)_{mur\ lourd}$ $\Delta(R_w+C_{tr})_{mur\ lourd}$

10 - 1 - 4 - 4 dB

5 - -1 - 1 - 2 dB

Exemple 1 :Doublage collé par plots Performance du bâtiment

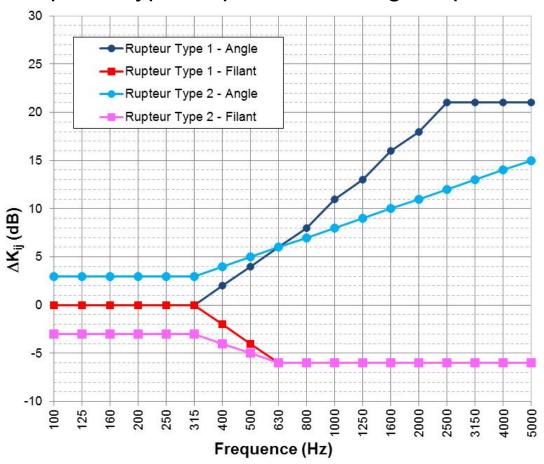
- Méthode de prédiction des doublages collés par plots : simple et robuste, intégrée à l'approche TMM
- Composant pouvant avoir un effet non-négligeable sur les transmissions latérales notamment pour les pièces en pignon et pour les basses fréquences
- Suivi de la raideur dynamique du composant
 « thermique » pour évaluer la performance acoustique

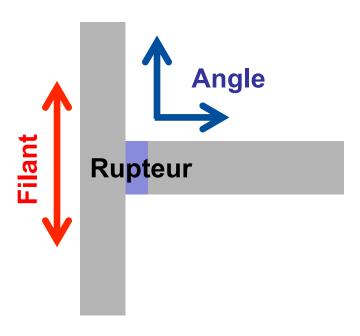


Exemple 2 Rupteurs de pont thermique

 Modification des transmissions vibratoires aux jonctions → Modification des transmissions latérales

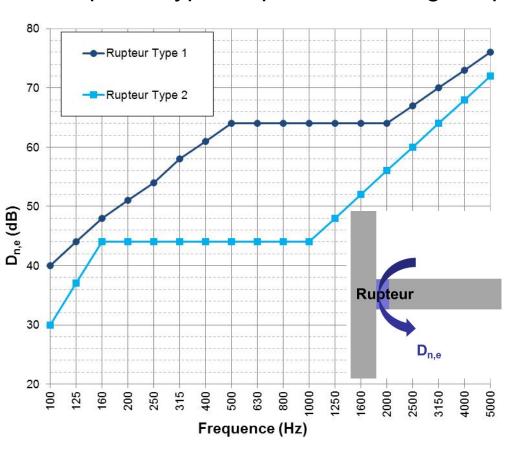
 Faiblesse vis-à-vis des bruits aériens : doublage intérieur thermo-acoustique recouvrant complétement le rupteur

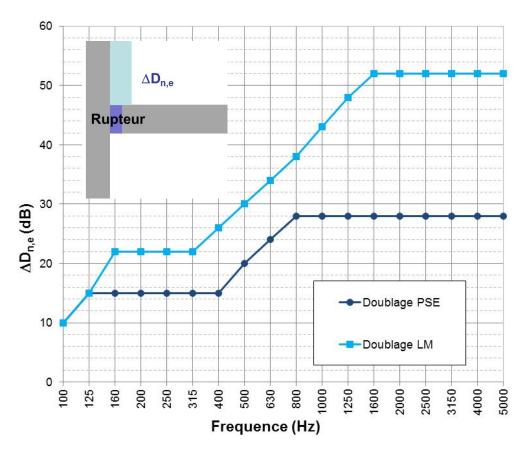

 Prise en compte des rupteurs dans l'évaluation de la performance acoustique du bâtiment - Acoubat



Exemple 2 : Rupteurs Indice d'affaiblissement vibratoire

- Rupteur Type 1 : armature « continue » (≤ 30cm)
- Rupteur Type 2 : points d'ancrage espacés





Exemple 2 : Rupteurs Fuite aux bruits aériens

- Rupteur Type 1 : armature continue (≤ 30cm)
- Rupteur Type 2 : points d'ancrage espacés

Exemple 2 : Rupteurs Performance du bâtiment

- Modification des transmissions vibratoires aux jonctions et donc des transmission latérales
- Méthode de prise en compte de 2 types de rupteurs thermiques pour évaluer la performance acoustique du bâtiment
- Utilisation d'un doublage approprié recouvrant complètement le rupteur permet d'avoir des solutions acoustiques règlementaires

Exemple 3 Double fenêtre

- · Réhabilitation thermique en conservant le caractère de la façade extérieure (pose intérieure)
- Amélioration de la performance thermique
- Risque de condensation sur le vitrage intérieur de la fenêtre extérieure : besoin d'une circulation d'air entre les 2 fenêtres

RAGE Guide pour la prescription et la mise en œuvre des doubles fenêtres en rénovation des logements

Vue extérieure

Vue intérieure (fenêtre fermée & ouverte)

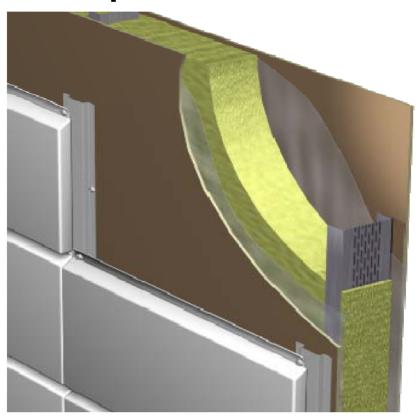
Façade avant

Exemple 3 : Double fenêtre Performance acoustique

- Solution technique permettant de dépasser facilement un indice d'affaiblissement acoustique R_{A.tr} de la double fenêtre de 40 dB
- Performance acoustique de la fenêtre simple vitrage originelle
 R_{A,tr} ≈ 21 dB sans réfection des joints (état initial)
 R_{A,tr} ≈ 27 dB avec réfection des joints (état restauré)
- Campagne de mesure pour évaluer les performances acoustiques en fonction de la réfection ou non de la fenêtre originale, du type de la deuxième fenêtre, de l'espacement, de la présence d'une entrée d'air → méthode simplifiée de dimensionnement

Exemple 3 : Double fenêtre Performance acoustique

Performance de la	≈21 dB(1)		≈27 dB(2)		
fenêtre existante	sans réfection des joints (état initial)		avec réfection des joints (état restauré)		
Type de la nouvelle	Simple vitrage	Double vitrage	Simple vitrage	Double vitrage	
fenêtre	sans ou avec entrée d'air	sans ou avec entrée d'air	sans ou avec entrée d'air	sans entrée d'air	avec entrée d'air
Performance de la	entre 23 et 30	entre 25 et 36	entre 23 et 30	entre 27	entre 25
nouvelle fenêtre	dB	dB	dB	et 36 dB	et 34 dB
(R _{A,tr Nouvelle Fenêtre)}					
Performance	R _{A,tr Nouvelle Fenêtre}	R _{A,tr Nouvelle Fenêtre}	R _{A,tr Nouvelle Fenêtre}	$R_{A,tr}$	$R_{A,tr}$
résultante de la	+ 4 dB	+ 6 dB	+ 12dB	Nouvelle	Nouvelle
double fenêtre (R _{A,tr}	Soit entre 27 et	Soit entre 31 et	Soit entre 34 et	Fenêtre +	Fenêtre +
Double Fenêtre) avec un	<u>34 dB</u>	<u>42 dB</u>	<u>42 dB</u>	13 dB	14 dB
écartement entre les				<u>Soit</u>	<u>Soit</u>
deux fenêtre de 100				entre 40	entre 39
mm				<u>et 49 dB</u>	<u>et 48 dB</u>
Augmentation de la	+ 2dB par pas de 50mm				
performance suivant					
l'écartement entre					
les deux fenêtres					


Exemple 3 : Double fenêtre Performance acoustique

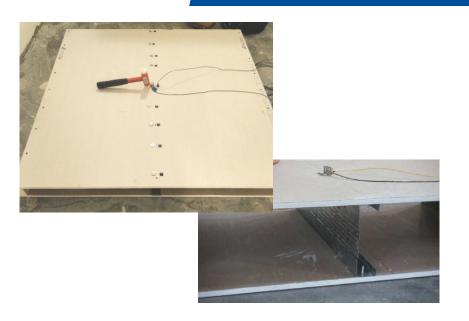
- L'augmentation de l'écartement entre les deux fenêtres améliore la performance acoustique de la double fenêtre
- Pour une ancienne fenêtre avec réfection des joints, pas de solution pour avoir une double fenêtre de performance limitée R_{A,tr} < 33 dB
- Vigilance vis-à-vis du confort intérieur (émergence des bruits intérieurs)
 - Limiter l'écartement entre les 2 fenêtres
- Limiter la performance acoustique de la nouvelle fenêtre par le choix du vitrage et la présence d'une entrée d'air
 - Ancienne fenêtre sans réfection des joints sinon entrée d'air

Exemple 4 Ossature métallique thermique

 Façade légère sur ossature métallique à haute performance thermique : ossature métallique perforée

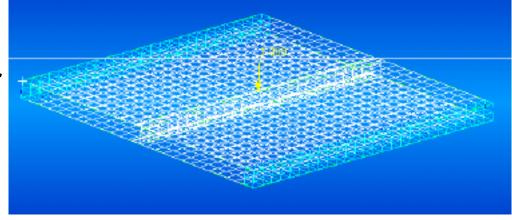
épaisseur ≈175 mm

Vers une ossature acoustique, thermo-acoustique?



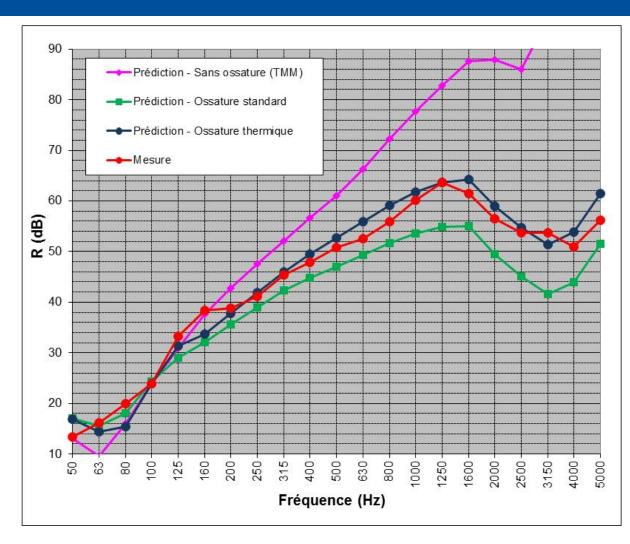
Exemple 4 : Ossature métallique Modélisation de la paroi

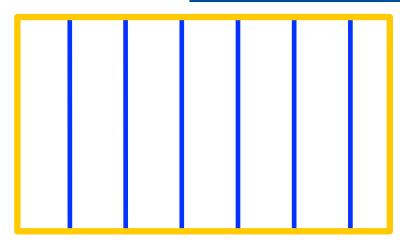
- > Approche mixte pour l'évaluation de la performance acoustique
- Basses fréquences connexions linéiques : approche par onde avec des ressorts linéiques localisés à la position des montants couplant les panneaux de part et d'autres d'une cavité
- ➤ Moyennes et hautes fréquences connexions par point : approche énergétique SEA avec des ressorts ponctuels à la position des vis sur l'ossature
- > Transition entre les deux approches : demi longueur de flexion des panneaux = distance entre les vis
- Différentiation entre l'ossature périphérique et non périphérique


Exemple 4 : Ossature métallique Caractérisation Ossature

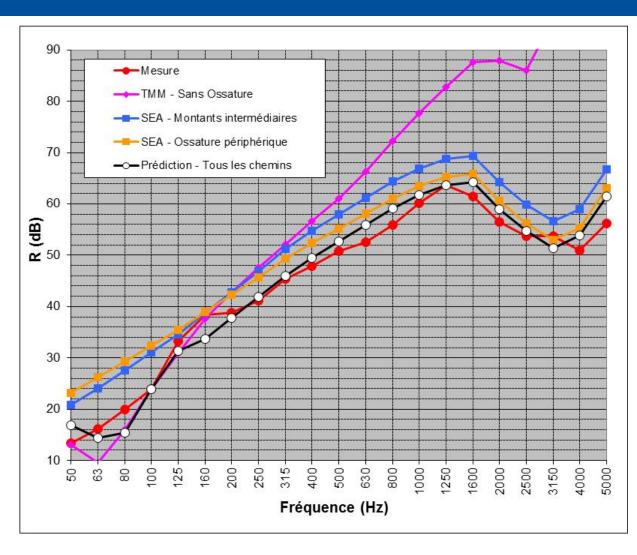
➤ Caractérisation expérimentale : mesure d'une fonction de transfert pour obtenir une raideur équivalente ponctuelle

K=F/d in N/m


➤ Modélisation par éléments finis pour investiguer de nouvelles formes


Exemple 4 : Ossature métallique Prédiction de la performance

	R _w (C;C _{tr}) en dB	
Prédiction sans ossature	55 (-4;-12)	
Prédiction avec ossature standard	47 (-2;-6)	
Prédiction avec ossature thermique	51 (-3;-9)	
Mesure avec ossature thermique	52 (-3;-10)	


Exemple 4 : Ossature métallique Prédiction de la performance

Montants intermédiaires Ossature périphérique

Chemin par les montants intermédiaires optimisé

Amélioration de l'ossature périphérique à considérer

Conclusions

- Besoin d'adapter, de coupler différents outils pour prédire la performance acoustique des composants
- Caractériser les différents éléments constitutifs
- Pour le composant dans l'ouvrage, nécessité d'une approche multicritère et globale avec des outils adaptés... pour limiter les possibles dégradations et des choix éclairés