Propriétés acoustiques et thermiques d'un matériau bio-sourcé

Le béton de chanvre

P. Glé & E. Gourlay

Vers des matériaux écologiques et multifonctionnels dans le bâtiment

Constats et mesures

- Bâtiment : plus grand consommateur d'énergie (≈ 44% en 2007) [cgd, 2010]
- ⇒ Grenelle de l'Environnement, Réglementations thermiques (RT 2012)
- ⇒ 440 milliards €≈ 535 000 emplois [Grosselin, 2011]

Conclusion

Vers des matériaux écologiques et multifonctionnels dans le bâtiment

Constats et mesures

- Bâtiment : plus grand consommateur d'énergie (≈ 44% en 2007) [cgd, 2010]
- ⇒ Grenelle de l'Environnement, Réglementations thermiques (RT 2012)
- ⇒ 440 milliards €≈ 535 000 emplois [Grosselin, 2011]

De nouvelles exigences pour les matériaux

- Vers des matériaux de plus en plus isolants en thermique
- Vers des matériaux respectueux de l'environnement
- Vers des matériaux multifonctionnels

Vers des matériaux écologiques et multifonctionnels dans le bâtiment

Constats et mesures

- Bâtiment : plus grand consommateur d'énergie (≈ 44% en 2007) [cgd, 2010]
- ⇒ Grenelle de l'Environnement, Réglementations thermiques (RT 2012)
- ⇒ 440 milliards €≈ 535 000 emplois [Grosselin, 2011]

De nouvelles exigences pour les matériaux

- Vers des matériaux de plus en plus isolants en thermique
- Vers des matériaux respectueux de l'environnement
- Vers des matériaux multifonctionnels

Les matériaux clés

Les éco-matériaux, particulièrement les bio-sourcés

Plan de la présentation

Le béton de chanvre

Problématiques

En acoustique

En thermique

Résultats expérimentaux

Effets des constituants

Effet de la mise en œuvre

Modélisation

En acoustique

En thermique

Conclusion

Plan de la présentation

Le béton de chanvre

Problématiques
En acoustique
En thermique

Résultats expérimentaux

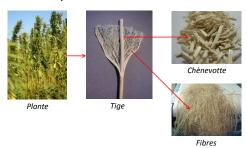
Effets des constituants

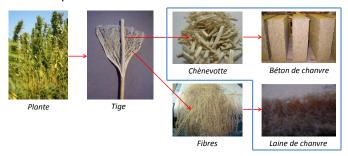
Effet de la mise en œuvre

Modelisation
En acoustique
En thermique

Conclusion

Plante





Les sous produits du chanvre

Réalisations en béton de chanvre

 \Rightarrow 1 m^2 stocke 35 kg de CO₂ sur 100 ans (ACV [Boutin et al., 2005])

Formulations & applications

Modes de mise en œuvre

Banchage

[Bevan & Woolley, 2008]

Projection

Dosages et applications

•					
Formulation		Toit	Mur	Enduit	Sol
	Chanvre	100	100	100	100
Dosages $(kg.m^{-3})$	Eau	100	220	800	275
0 (0)	Liant	200	350	500	500
$ ho_{stab}$ (kg.m $^{-3}$)		250	420	800	500
E _{28 i} (MPa)		>3	>15	>20	>15
$Rc_{28 i}$ (MPa)		>0,05	>0,2	>0,3	>0,3

Formulations règles professionnelles [reg, 2006]

Plan de la présentation

Le béton de chanvre

Problématiques En acoustique En thermique

Résultats expérimentaux

Effets des constituants

Effet de la mise en œuvre

Modélisation En acoustique En thermique

Conclusion

Spécificités du béton de chanvre

Des particules poreuses

Un matériau anisotrope

Distribution de taille de particules

Spécificités du béton de chanvre

Des particules poreuses

Un matériau anisotrope

Données de [Ceyte, 2008]	:
Longueur (mm)	4-9

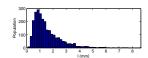
Longueur (mm) 4-9 Largeur (mm) 1-2.5 Epaisseur (mm) ≈ 0.5

Distribution de taille de particules

Spécificités du béton de chanvre

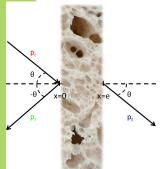
Des particules poreuses

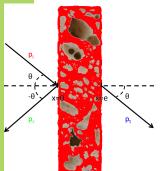
Un matériau anisotrope



Données de [Ceyte, 2008]
	_

Longueur (*mm*) 4-9 Largeur (*mm*) 1-2.5 Epaisseur (*mm*) ≈0.5


Distribution de taille de particules

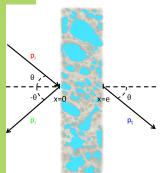

$$\alpha(\theta) = 1 - \left| \frac{p_r(\theta, x = 0)}{p_i(\theta, x = 0)} \right|^2$$

$$TL(\theta) = -10 \log \left| \frac{p_t(\theta, x = e)}{p_t(\theta, x = 0)} \right|^2$$

$$\Delta p + \omega^2 \frac{\rho}{K} p = 0$$

$$\alpha(\theta) = 1 - \left| \frac{p_r(\theta, x = 0)}{p_i(\theta, x = 0)} \right|^2$$

$$TL(\theta) = -10 \log \left| \frac{p_t(\theta, x = e)}{p_t(\theta, x = 0)} \right|^2$$


Phase solide : Dissipation mécanique

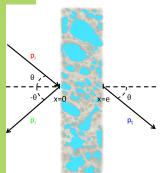
- ► Squelette élastique : ondes de Biot [Biot, 1956a, Biot, 1956b]
- ► Squelette rigide : $f > f_{dec}$ [Zwikker & Kosten, 1949]

$$\Delta p + \omega^2 \frac{\rho}{K} p = 0$$

$$\alpha(\theta) = 1 - \left| \frac{p_r(\theta, x = 0)}{p_i(\theta, x = 0)} \right|^2$$

$$TL(\theta) = -10 \log \left| \frac{p_t(\theta, x = e)}{p_i(\theta, x = 0)} \right|^2$$

Phase solide : Dissipation mécanique


- ► Squelette élastique : ondes de Biot [Biot, 1956a, Biot, 1956b]
- ► Squelette rigide : f > f_{dec.} [Zwikker & Kosten, 1949]

Phase fluide : Dissipation visco-inertielle (ρ) et thermique (K)

$$\Delta p + \omega^2 \frac{\rho}{K} p = 0$$

$$\alpha(\theta) = 1 - \left| \frac{p_r(\theta, x = 0)}{p_i(\theta, x = 0)} \right|^2$$

$$TL(\theta) = -10 \log \left| \frac{p_t(\theta, x = e)}{p_i(\theta, x = 0)} \right|^2$$

Phase solide : Dissipation mécanique

- ► Squelette élastique : ondes de Biot [Biot, 1956a, Biot, 1956b]
- Squelette rigide : $f > f_{dec}$ [Zwikker & Kosten, 1949]

Phase fluide : Dissipation visco-inertielle (ρ) et thermique (K)

$$\Delta p + \omega^2 \frac{\rho}{K} p = 0$$

 Niveaux d'observation Pores

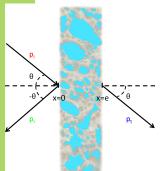
> [Johnson et al., 1987, Allard, 1993,

Lafarge et al., 1997]

Squelette

[Tarnow, 1996, Umnova et al., 2000,

Boutin & Geindreau, 2010]


Cas d'un matériau multi-échelle

Double porosité Distribution de taille de pores

Iny & Boutin, 2003, [Yamamoto & Turgut

nova, 2011] Horoshenkov et al., 2007

$$\alpha(\theta) = 1 - \left| \frac{p_r(\theta, x = 0)}{p_i(\theta, x = 0)} \right|^2$$

$$TL(\theta) = -10 \log \left| \frac{p_t(\theta, x = e)}{p_i(\theta, x = 0)} \right|^2$$

Phase solide: Dissipation mécanique

- ► Squelette élastique : ondes de Biot [Biot, 1956a, Biot, 1956b]
- ► Squelette rigide : f > f_{dec.} [Zwikker & Kosten, 1949]

Phase fluide : Dissipation visco-inertielle (ρ) et thermique (K)

$$\Delta p + \omega^2 \frac{\rho}{K} p = 0$$

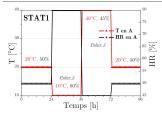
 Niveaux d'observation Pores

[Johnson et al., 1987,

Allard, 1993, Lafarge et al., 1997]

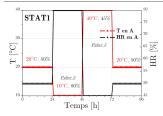
Sauelette

[Tarnow, 1996. Umnova et al., 2000,

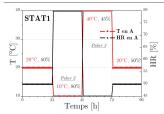

Boutin & Geindreau, 2010]

 Cas d'un matériau multi-échelle Double porosité Distribution de taille de pores

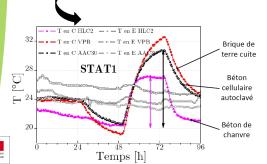
[Olny & Boutin, 2003, [Yamamoto & Turgut, 1998, Venegas & Umnova, 2011] Horoshenkov et al., 2007]


Matériaux soumis à des sollicitations statiques [samri, 2008]

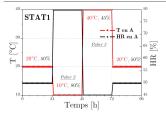
> Changements de phase au sein du béton de chanvre

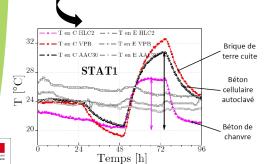

Matériaux soumis à des sollicitations statiques [Samri, 2008]

> Changements de phase au sein du béton de chanvre



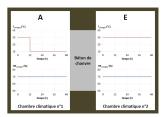
Matériaux soumis à des sollicitations statiques [Samri, 2008]


Changements de phase au sein du béton de chanvre

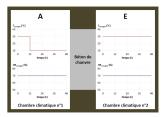


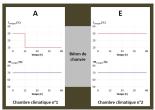
4 A >

Matériaux soumis à des sollicitations statiques [Samri, 2008]

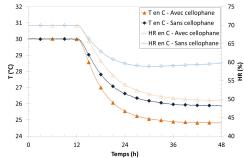


⇒ Changements de phase au sein du béton de chanvre





Choc thermique sur une face du mur



Choc thermique sur une face du mur

Plan de la présentation

Le béton de chanvre

Problématiques
En acoustique
En thermique

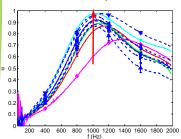
Résultats expérimentaux

Effets des constituants

Effet de la mise en œuvre

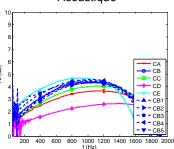
Vodélisation En acoustique En thermique

Conclusion



Effets des constituants : Origine et granulométrie de la chènevotte

Thermique



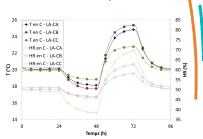
Effets des constituants : Origine et granulométrie de la chènevotte

Acoustique

- $\Rightarrow \alpha$ augmente avec les petites particules
- ⇒ *TL* ne dépend pas de la granulo pour une chènevotte donnée

Thermique

⇒ La chènevotte de granulométrie



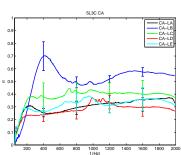
Effets des constituants : Origine et granulométrie de la chènevotte

Acoustique 10 9 8 7 6 5 4 3 2 0 200 400 600 800 1000 1200 1400 1600 1800 2000 (H2)

- $\Rightarrow \alpha$ augmente avec les petites particules
- ⇒ *TL* ne dépend pas de la granulo pour une chènevotte donnée

Thermique

⇒ La chènevotte de granulométrie médiane est optimale



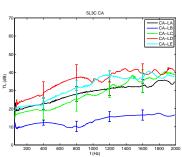
Effets des constituants : Type de liant

Acoustique

Contrôle par la résistivité σ
 -LD → σ important,
 -LA, LC et LE → σ moyen,
 -I B → σ faible

Thermique

⇒ Compromis nécessaire entre diffusion de vapeur d'eau, inertie et isolation thermique

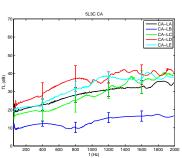


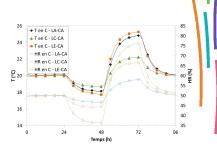
Effets des constituants : Type de liant

Acoustique

⇒ Contrôle par la résistivité σ -LD $\mapsto \sigma$ important,
-LA, LC et LE $\mapsto \sigma$ moyen,
-LB $\mapsto \sigma$ faible

Thermique


 Compromis nécessaire entre diffusion de vapeur d'eau, inertie et isolation thermique


Effets des constituants : Type de liant

Acoustique

 \Rightarrow Contrôle par la résistivité σ -LD $\mapsto \sigma$ important, -LA, LC et LE $\mapsto \sigma$ moyen, -LB $\mapsto \sigma$ faible

Thermique

⇒ Compromis nécessaire entre diffusion de vapeur d'eau, inertie et isolation thermique

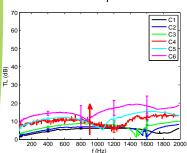
Effet de la mise en œuvre : Compacité

Acoustique 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Thermique

- sse d' α et gain de TL sur la gamme testée
- \Rightarrow Déplacement du pic d' α vers BF

⇒ Augmentation quasi linéaire de la conductivité thermique en fonction de la masse volumique

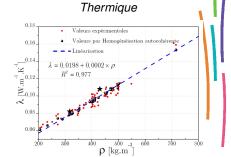


Effet de la mise en œuvre : Compacité

Acoustique

- \Rightarrow Baisse d' α et gain de TL sur la gamme testée
- \Rightarrow Déplacement du pic d' α vers BF

Thermique



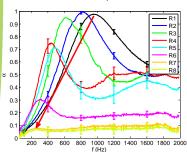
Effet de la mise en œuvre : Compacité

Acoustique 60 C4 C5 50 C6 (ag) 40 1 30 20 800 200 400 1000 1200 1400 1600 1800 2000 f (Hz)

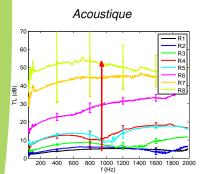
- \Rightarrow Baisse d' α et gain de TL sur la gamme testée
- \Rightarrow Déplacement du pic d' α vers BF

⇒ Augmentation quasi linéaire de la conductivité thermique en fonction de la masse volumique

[Samri, 2008]



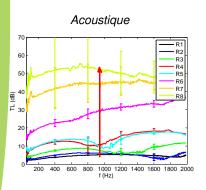
Effet de la mise en œuvre : Concentration en liant

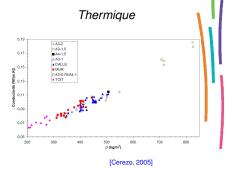

Thermique

Effet de la mise en œuvre : Concentration en liant

Thermique

 \Rightarrow Passage de (α important, faible *TL*) à (faible α , *TL* important)


⇒ Conductivité thermique croît avec la concentration en liant



Effet de la mise en œuvre : Concentration en liant

 \Rightarrow Passage de (α important, faible TL) à (faible α , TL important)

⇒ Conductivité thermique croît avec la concentration en liant

Plan de la présentation

Le béton de chanvre

Problématiques
En acoustique
En thermique

Résultats expérimentaux
Effets des constituants
Effet de la mise en œuvre

Modélisation En acoustique En thermique

Conclusion

Acoustique : De la caractérisation à la modélisation

Modèles

Double porosité avec fort contraste :

[Olny & Boutin, 2003]

- Hypothèse de squelette rigide (f_{dec} < 20 Hz)
 - ► Effets visco-inertiels: [Johnson et al., 1987]
 - ► Effets thermiques : [Zwikker & Kosten, 1949]

Acoustique : De la caractérisation à la modélisation

Modèles

Double porosité avec fort contraste :

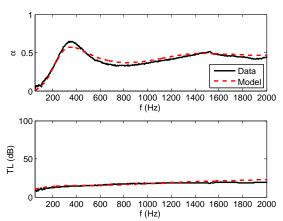
[Olny & Boutin, 2003]

- Hypothèse de squelette rigide (f_{dec} < 20 Hz)
 - ► Effets visco-inertiels : [Johnson et al., 1987]
 - ► Effets thermiques : [Zwikker & Kosten, 1949]

Démarche

- Caractérisation en tube de Kundt (Méthode 3 positions sans cavité [Iwase et al., 1998]) [100; 2000*Hz*]
- 2. Mesure de ϕ [Beranek, 1942] et σ (ISO9053)
- 3. Caractérisation indirecte de α_{∞} et Λ *via* ρ [Panneton & Olny, 2006]

4. Estimation de ϕ_{inter} via $\Re(K)$ selon le modèle de Zwikker et Kosten



Acoustique : Résultats pour le béton de chanvre

Formulation Mur: Ratio Liant/Chanvre = 2

Modélisation des transports couplés de chaleur et de masse

Modèle de KÜNZEL (WUFI®) [Künzel, 1994]

$$\begin{cases} \rho c \cdot \frac{\partial T}{\partial t} = \nabla \cdot (\lambda \nabla T) + L_{v} \nabla \cdot (\delta_{p} \nabla (\phi p_{sat})) \\ \frac{\partial w}{\partial \phi} \cdot \frac{\partial \phi}{\partial t} = \nabla \cdot (D_{\phi} \nabla \phi + \delta_{p} \nabla (\phi p_{sat})) \end{cases}$$

T – température [°C]; ϕ – humidité relative [-]; t – temps [s]

 ρ – masse volumique [kg/m³]; λ – conductivité thermique [W/m.K]

c – capacité thermique massique [J/kg.K]

 L_{ν} – chaleur latente massique de vaporisation de l'eau [J/kg]

 δ_p – perméabilité à la vapeur d'eau [kg/m.s.Pa]

p_{sat} – pression de vapeur saturante de l'eau [Pa]

w – teneur en eau [kg/m³]

 D_{ϕ} – coefficient de conduction liquide [kg/m.s]

Plan de la présentation

Le béton de chanvre

Problématiques
En acoustique
En thermique

Résultats expérimentaux

Effets des constituants

Effet de la mise en œuvre

Modélisation
En acoustique
En thermique

Conclusion

Conclusions & Perspectives

- Comportements atypiques en acoustique et en thermique
- Contrôle des performances via densité et perméabilité
- Premiers résultats de modélisation encourageants

- Etude croisée acoustique / thermique après vieillissement
- Extension à d'autres granulats végétaux
- Optimisation conjointe acoustique / thermique

Conclusion

Conclusions & Perspectives

- Comportements atypiques en acoustique et en thermique
- Contrôle des performances via densité et perméabilité
- Premiers résultats de modélisation encourageants

- Etude croisée acoustique / thermique après vieillissement
- Extension à d'autres granulats végétaux
- Optimisation conjointe acoustique / thermique

Merci de votre attention

Centre d'Études techniques de l'Équipement de l'Est

Merci de votre attention

Contacts:

philippe.gle@developpement-durable.gouv.fr etienne.gourlay@developpement-durable.gouv.fr

Présent pour l'avenir

Centre d'Études techniques de l'Équipement de l'Est

Bibliographie I

(2006).

Règles professionnelles d'exécution de murs en béton de chanvre.

RP2C - Commission Règles Professionnelles Construction Chanvre.

(2010).

Bilan énergétique de la france pour 2009.

Technical report, Commissariat général au développement durable.

Allard, J.-F. (1993).

Propagation of sound in porous media.

Applied Science, page 284.

Beranek, L. (1942).

Acoustic impedance of porous materials.

Journal of the Acoustical Society of America, 13:248-260.

Bevan, R. & Woolley, T. (2008).

Hemp lime construction, A guide to building with hemp lime composites.

Biot, M.-A. (1956a).

Theory of propagation of elastic waves in a fluid-saturated porous solid. I Low-frequency range. Journal of the Acoustical Society of America, 28:168–178.

Biot. M.-A. (1956b).

Theory of propagation of elastic waves in a fluid-saturated porous solid. Il High-frequency range. Journal of the Acoustical Society of America, 28:179–191.

Bibliographie II

Boutin, C. & Geindreau, C. (2010).

Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range.

Physical Review E. 82-036313 :18.

Boutin, M.-P., Flamin, C., Quinton, S., & Gosse, G. (2005).

Analyse du cycle de vie : Compounds thermoplastiques chargés fibres de chanvre et Mur en béton de chanvre banché sur ossature bois.

Rapport d'Étude INRA Lille, Réf. MAP 04 B1 0501., page 32.

Cerezo, V. (2005).

Propriétés mécaniques, thermiques et acoustiques d'un matériau à base de particules végétales : approche expérimentale et modélisation théorique.
PhD thesis. Ecole doctorale MEGA. Lyon.

Ceyte, I. (2008).

Béton de chanvre, définition des caractéristiques mécaniques de la chènevotte, Travail de Fin d'Études. ENTPE, page 155.

Grosselin, J.-M. (2011).

Le développement industriel des filières stratégiques de l'économie verte. la filière "matériaux bio-sourcés & construction".

In Premières Assises Constructions & Bioressources.

Horoshenkov, K.-V., Attenborough, K., & Chandler-Wilde, S.-N. (2007).

Padé approximants for the acoustical properties of rigid frame porous media with pore size distributions. Journal of the Acoustical Society of America. 104(3):1198–1209.

Bibliographie III

Iwase, T., Izumi, Y., & Kawabata, R. (1998).

A new measuring method for sound propagation constant by using sound tube without any air spaces back of a test material.

Johnson, D.-L., Koplik, J., & Dashen, R. (1987).

Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Fluid Mechanics, 176:379-402.

Künzel, H. M. (1994).

Verfahren zur ein- und zweidimensionalen Berechnung des gekoppelten Wärme- und Feuchtetransports in Bauteilen mit einfachen Kennwerten

Dissertation, Stuttgart: Universität Stuttgart, 104 p.

Lafarge, D., Lemarinier, P., Allard, J.-F., & Tarnow, V. (1997).

Dynamic compressibility of air in porous structures at audiblefrequencies. Journal of the Acoustical Society of America, 102(4):1995-2006.

Olny, X. & Boutin, C. (2003).

Acoustic wave propagation in double porosity media.

Journal of the Acoustical Society of America, 114(1):73-89.

Panneton, R. & Olny, X. (2006).

Acoustical determination of the parameters governing viscous dissipation in porous media. Journal of the Acoustical Society of America, 119(4):2027-2040.

Samri, D. (2008).

Analyse physique et caractérisation hygrothermique des matériaux de construction ; approche expérimentale et modélisation numérique.

PhD thesis. Ecole doctorale MEGA, Lvon.

Bibliographie IV

Tarnow, V. (1996).

Airflow resistivity of models of fibrous acoustic materials.

Journal of the Acoustical Society of America, 100(6):3706–3713.

Umnova, O., Attenborough, K., & Li, K.-M. (2000).

Cell model calculations of dynamic drag parameters in packings of spheres.

The Journal of the Acoustical Society of America, 107(6):3113-3119.

Venegas, R. & Umnova, O. (2011).

Acoustical properties of double porosity granular materials.

Journal of the Acoustical Society of America, 130 (5):2765–2776.

Yamamoto, T. & Turgut, A. (1998).

Acoustic wave propagation through porous media wth arbitrary pore size distributions.

Journal of the Acoustical Society of America, 83 (5):1744-1751.

Zwikker, C. & Kosten, C.-W. (1949).

Sound absorbing materials.

Elsevier, New-York, page 174.

